100 WATTS

SRW/SRP-100 SERIES AC-DC

	FEATURES:	
•	RoHS Compliant	

- Universal 85-264 VAC Input
- Compact 3.3" x 5" x 1.5" Size
- 2 Year Warranty
- One to Four Tightly Regulated
- Outputs

- EN 60950-1 ITE Certification • EN 60601-1 Medical Certification
- EMC to EN 61000-6-2 & EN 60601-1-2
- Optional Perforated Cover

CHASSIS/COVER

OPEN CHASSIS

SAFETY SPECIFICATIONS

General		Protection Class: I Overvoltage Category: II Pollution Degree: 2
c RL us	Underwriters Laboratories File E137708/E140259	UL 60950-1 2 nd Edition, 2007 UL 60601-1 1st Edition, 2006 AAMI/ANSI ES 60601-1, 2005
IECEE Scheme		CB Reports/Certificates (including all National and Group Deviations) IEC 60950-1:2009, Second Edition IEC 60601-1:1988 +A1:1991 +A2:1995 IEC 60601-1:2005 Third Edition
c RL us	UL Recognition Mark for Canada File E137708/E140259	CAN/CSA-C22.2 No. 60950-1-07, 2 nd Edition CAN/CSA-C22.2 No. 601-1-M90, 2005 CAN/CSA-C22.2 No. 60601-1:2008
SUD	TUV	EN 60950-1/A12:2011 EN 60601-1/A2:1995 EN 60601-1:2006
CE	Low Voltage Directive RoHS Directive (Recast)	(2006/95/EC of December 2006) (2011/65/EU of June 2011)
		UT 2 OUTPUT 3 OUTPUT 4

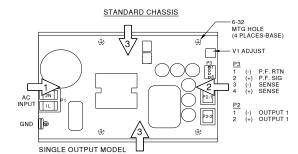
MODEL NO.	OUTPUT 1	OUTPUT 2	OUTPUT 3	OUTPUT 4
SRW-100-4001	+3.3V/10A(2)	+5V/4A	+12V/2A(3)	-12V/1A
SRW-100-4002	+5V/10A(2)	+24V/2A	+12V/2A(3)	-12V/1A
SRW-100-4003	+5V/10A(2)	+24V/2A	+15V/2A(3)	-15V/1A
SRW-100-4004	+5V/10A(2)	-5.2V/4A	+12V/2A(3)	-12V/1A
SRW-100-4005	+5V/10A(2)	-5.2V/4A	+15V/2A(3)	-15V/1A
SRW-100-4006	+5V/10A(2)	+3.4V/4A	+9V/1A	24V/.50A
SRW-100-4007	+5V/10A(2)	+15V/3A	+12V/2A	-12V/1A
SRW-100-4008	+5V/10A(2)	+3.3V/4A	+12V/2A	-5V/1A
SRW-100-4009-IT	+3.3V/10A(2)	+5V/4A	+12V/2A	-5V/1A
SRW-100-4010	+5V/5A	+15V/4A	+12V/2A(3)	9V/2.5A
SRW-100-4011	+5V/10A(2)	-15V/2.2A	+15V/2A(3)	12V/1A
SRW-100-4012	+5V/10A(2)	+3.3V/4A	+12V/2A(3)	-12V/1A
SRW-100-3001	+5V/10A(2)	+12V/4A		-12V/1A
SRW-100-3002	+5V/10A(2)	+15V/3A		-15V/1A
SRW-100-3003	+5V/10A(2)	+3.3V/8A		12V/1A
SRW-100-3004	+3.3V/5A	+5.8V/3A		-48V/1A
SRW-100-2001	+12V/5A	-12V/4A		
SRW-100-2002	+15V/5A	-15V/3A		
SRW-100-2003	+12.5V/4A	+16V/2A		
SRW-100-1001	3.3V/20A(4)			
SRW-100-1002	5V/20A			
SRW-100-1003	12V/8.3A			
SRW-100-1004	15V/6.7A			
SRW-100-1005	24V/4.2A			
SRW-100-1006	28V/3.6A			
SRW-100-1007	48V/2.1A			
SRW-100-1008	40V/2.5A			
SRP-100-4001	+5V/12A(2)	+24V/3A	+12V/2A(3)	-12V/1A
SRP-100-4002	+5V/12A(2)	+24V/3A	+15V/2A(3)	-15V/1A
SRP-100-4003	+5V/12A(2)	-5V/4A	+12V/2A(3)	-12V/1A
SRP-100-4004	+5V/12A(2)	-5V/4A	+15V/2A(3)	-15V/1A
SRP-100-4005	+5V/12A(2)	+12V/3A	+8V/2A	-8V/1A
SRP-100-3001	+5V/12A(2)	+12V/4A		-12V/1A
SRP-100-2001	+5V/12A(2)	+24V/3A		

70W	Convection	
85W		cooled w/1Sq. ft baseplate
100W	200 LFM F	
		(All outputs at 50% load)
, ,		
Output 1:		
Output 2		
		(10-100% load change)
		(10-100% load change) (10-100% load change)
		(10-100% load change)
		(10-100% load change)
		(10 10070 load change)
		(Output 1 load varied 50-100
		(Output Hodd valied 50 100
Outputs 1 - 4:	1.0%	
None		
5.0%		
2mS		
50% to 100%		
Output 1:	110% to 15	0%
•		
Outputs 1 & 2:	110W Min.	
Outputs cycle on/	/off, auto red	covery
Outputs 3 & 4:	110% Min.	
10 mS min., 100V	N output, 12	20V Input
1 Second		
NS		
85 – 264 Volts A0	5	
47 – 63 Hz		
3A at 85V Input		
	NS .	
		Chart
	3	
Outputs 1 – 4:	0.02%	/°C
TIONS		
2MOPP (Means of	of Patient Pr	otection)
Operational Insula	ation(Consu	It factory for 1MOOP or 1MOP
707 VDC, Second	dary to Grou	ind, 1 Sec.
<100uA NC, <500	OuA SFC	
Logic low with inp		
minimum prior to		
minimum prior to		
250mV compensa	ation of outp	out cable losses
250mV compensa	-	
250mV compensation 150,000 Hours m	in., MIL-HD	but cable losses BK-217F, 25° C, GB
250mV compensa 150,000 Hours m 1.00 Lbs. Ope	in., MIL-HD en Frame	
250mV compensa 150,000 Hours m 1.00 Lbs. Ope	in., MIL-HD	
250mV compensi 150,000 Hours m 1.00 Lbs. Ope 1.05 Lbs. w/Ce	in., MIL-HD en Frame	
250mV compensi 150,000 Hours m 1.00 Lbs. Ope 1.05 Lbs. w/Cr t configurations.	in., MIL-HD en Frame over	
250mV compensa 150,000 Hours m 1.00 Lbs. Ope 1.05 Lbs. w/Co t configurations. ve or floating outputs	in., MIL-HD en Frame over s.	BK-217F, 25° C, GB
250mV compensi 150,000 Hours m 1.00 Lbs. Ope 1.05 Lbs. w/Cr t configurations. ve or floating outputs or complete output p	in., MIL-HD en Frame over s.	BK-217F, 25° C, GB
250mV compensi 150,000 Hours m 1.00 Lbs. Ope 1.05 Lbs. w/Cr t configurations. ve or floating outputs or complete output p 25° C, 100W unless	in., MIL-HD en Frame over s.	BK-217F, 25° C, GB
250mV compensi 150,000 Hours m 1.00 Lbs. Ope 1.05 Lbs. w/Cr t configurations. ve or floating outputs or complete output p	in., MIL-HD en Frame over s.	BK-217F, 25° C, GB
	(SRP) Output 3: Output 4: Output 1: Output 2: Output 2: Output 2: Output 2: Output 2: Output 2: Output 2: Output 3: Output 4: Output 4: Output 2: Output 3: Output 4: Output 3: Output 4: Output 4: Output 5 1 – 4: Output 3 & 4: 10 mS min., 100% 1 Second NS 85 – 264 Volts A(47 – 63 Hz 3A at 85V Input 30A .6884 (varies by ECIFICATION 0° C to + 70° C Derating: See Po - 40° C to + 85° (Output 1 – 4: TIONS 2MOPP (Means 6 Derational Insul 5656 VDC, Prima 200 VDC, Second	Output 2: (SRW) $\pm 0.25\%$ (SRP) $\pm 5.0\%$ Output 3: $\pm 2.0\%$ Output 4: $\pm 4.0\%$ Output 1: 95 - 105% Output 2: 95 - 105% Output 1: 0.5% Output 2: 95 - 105% Output 1: 0.5% Output 2: (SRP) Sold (SRP) 5.0% Output 3: 1.0% Output 4: 0.5% Output 3: 0.2% Output 4: 0.2% Output 1: 0.2% Output 1: 0.2% Output 3: 0.2% Output 4: 0.2% Output 5 1 - 4: 1.0% None 0utput 5 1 - 4 5.0% to 100% 0utput 1: Output 1: 110% to 15 Outputs 1 & 2: 110W Min. Outputs 3 & 4: 110% Min. 0utputs 3 & 4: 110% Min. 0utputs 3 & 4: 110% Min. 10 mS min., 100W output, 12 1 Second

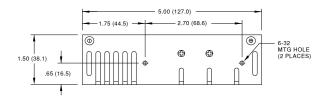
OUTPUT SPECIFICATIONS

Please specify the following optional features when ordering:

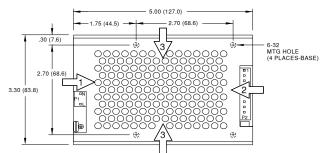
CO - Cover	
PF - Power Fail	
OVP – Overvoltage Protection	

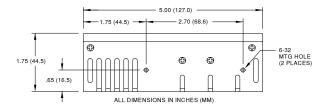

I/O - Isolated Outputs

TS - Terminal Strip

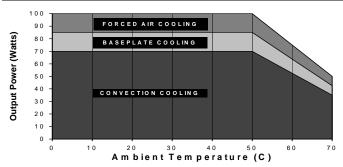

ELECTROMAGNETIC	COMPATIBII	ITY SPECIFICATIONS
Electrostatic Discharge	EN 61000-4-2	±8kV Contact Discharge
		±8kV Air Discharge
Radiated Electromagnetic Field	EN 61000-4-3	80MHz-2.5GHz, 10/m, 80% AM
EFT/Bursts	EN 61000-4-4	±2 kV
Surges	EN 61000-4-5	±1kV Differential Mode
		±2 kV Common Mode
Conducted Immunity	EN 61000-4-6	.15 to 80MHz, 3V, 80% AM
Voltage Dips and Interruptions	EN 61000-4-11	30% Reduction, 500ms
		95% Reduction, 10ms
		60% Reduction, 1s (Criteria B)
		95% Reductions, 5000ms
Radiated Emissions	EN 55022/11	Class B
Conducted Emissions	EN 55022/11	Class B

SRW/SRP-100 SERIES MECHANICAL SPECIFICATIONS





MULTIPLE OUTPUT MODEL



APPLICATIONS INFORMATION

- Each output can deliver its rated current but total output power must not exceed 70, 85 or 100 watts as determined by the cooling method.
- 2. Rated 8A maximum with convection cooled only.
- 3 Rated 1A maximum when convection cooled only.
- Rated 50 watts maximum output power when convection cooled, 70 watts when baseplate 4. or forced air cooled.
- 5. Free air convection cooling, 70 watts maximum output power.
- Base plate cooling rating of 85 watts requires a one square foot .09" thick aluminum area 6. attached to bottom four mounting holes.
- 7. Forced air cooling rating of 100 watts requires an air speed of 200 linear feet per minute flowing past a point one inch above the main isolation transformer.
- 8. Semiconductor case temperatures must not exceed 110°C.
- 9. Sufficient area must be provided around convection cooled power supplies to allow natural movement of air to develop.
- This product is intended for use as a professionally installed component within information 10 technology and medical equipment.
- A minimum load of 10% is required on output one to ensure proper regulation of 11. remaining outputs
- 12. Remote sense terminals may be used to compensate for cable losses up to 250mV. The use of a twisted pair is recommended as well as a decoupling capacitor (0.1 - $10 \mu F)$ and a capacitor of 100µF/amp connected across the load side.
- 13 Peak to peak output ripple and noise is measured directly at the output terminals of the power supply, without the use of the probe ground lead or retractable tip, 20 MHz bandwidth.
- This product includes only one fuse in the input circuit. In consideration of Clause 8.11.5 14. of IEC 60601-1:2005, a second fuse may be required in the end product.
- 15. This product was type tested and safety certified using the dielectric strength test voltages listed in Table 6 of IEC 60601-1:2005. In consideration of Clause 8.8.3, care must be taken to insure that the voltage applied to a reinforced insulation does not overstress different types and levels of insulation. Primary and secondary to ground capacitors may need to be disconnected prior to performing a dielectric strength test on the power supply or the end product. It is highly recommended that the DC test voltages listed in DVB.1, Annex DVB of UL 60601-1 1st Edition are not exceeded during a production-line dielectric strength test of the assembled end product. Please consult factory for further information.
- 16. This power supply has been safety approved and final tested using a DC dielectric strength test. Please consult factory before performing an AC dielectric strength test.
- Maximum screw penetration into chassis mounting holes is .125 inches. 17.

MAXIMUM OUTPUT POWER VS. AMBIENT TEMPERATURE

CONNECTOR SPECIFICATIONS

P1	AC Input	Terminal block with 4-40 inch screws on 0.325 inch centers
• •	(Single)	with #4 spade terminals
P1	AC Input	.156 friction lock header mates with Molex 09-50-3031 or
	(Multiple)	equivalent crimp terminal housing with Molex 08-50-0189 or
		equivalent crimp terminal.
P2	DC Output	6-32 screw down terminal mates with #6 ring tongue
	(Single)	terminal. (10 in-lb max.)
P2	DC Output	.156 friction lock header mates with Molex 09-50-3101 or
	(Multiple)	equivalent crimp terminal housing with Molex 08-50-0189 or
		equivalent crimp terminal.
G P3	Ground	.187 quick disconnect terminal.
P3	Option/Sense	.100 friction lock header mates with Molex 22-01-2047 or
	(Single)	equivalent crimp terminal housing with Molex 6459 or equivalent crimp terminal.
P3	Option	.100 friction lock header mates with Molex 22-01-2027 or
	(Multiple)	equivalent crimp terminal housing with Molex 6459 or equivalent crimp terminal.

3 – Fair

1 - Optimum 2 – Good

